

An Introduction to Mechanics of Materials

Mechanics I

Eric P. Kasper & Garrett J. Hall

CAL POLY

An Introduction to Mechanics of Materials

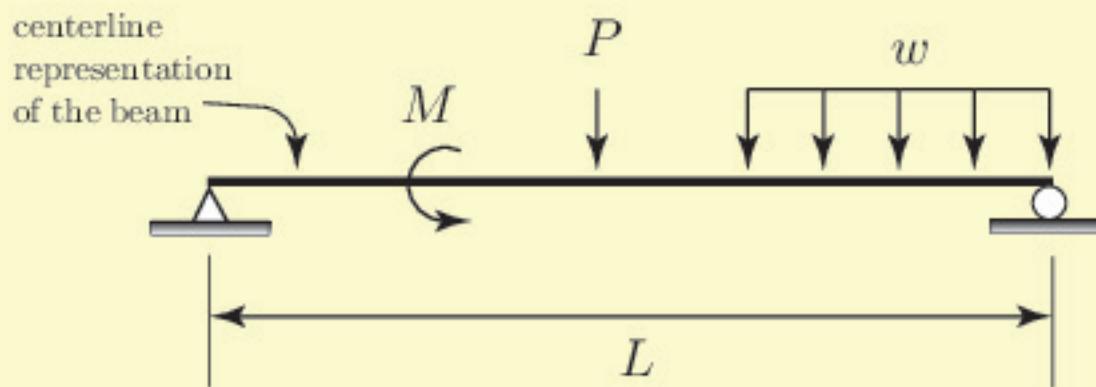
Beams: Shear and Moment Diagrams

Eric P. Kasper & Garrett J. Hall

Beams: Shear and Moment Diagrams

■ Definition:

- Consider a prismatic rod subjected both transverse loads and moments

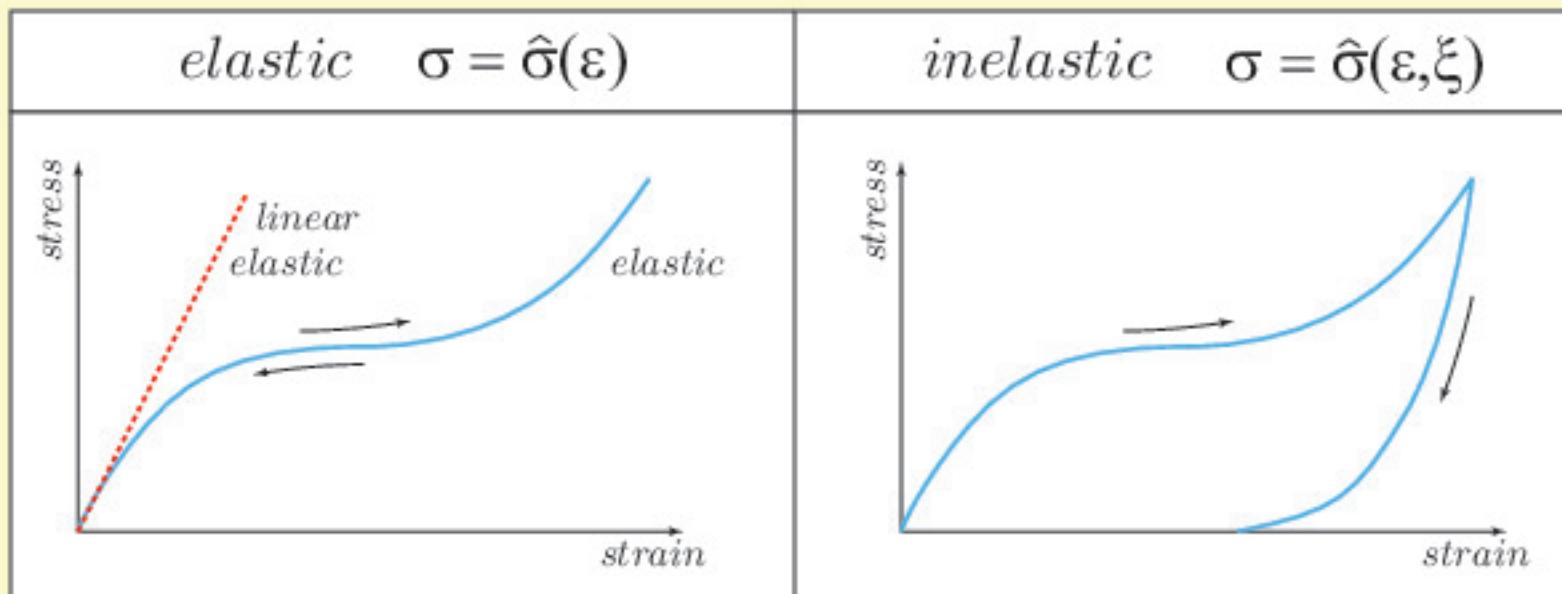


- The predominate dimension \equiv longitudinal axis
- Remaining two directions define the cross-section

Beams: Shear and Moment Diagrams

■ Assumptions:

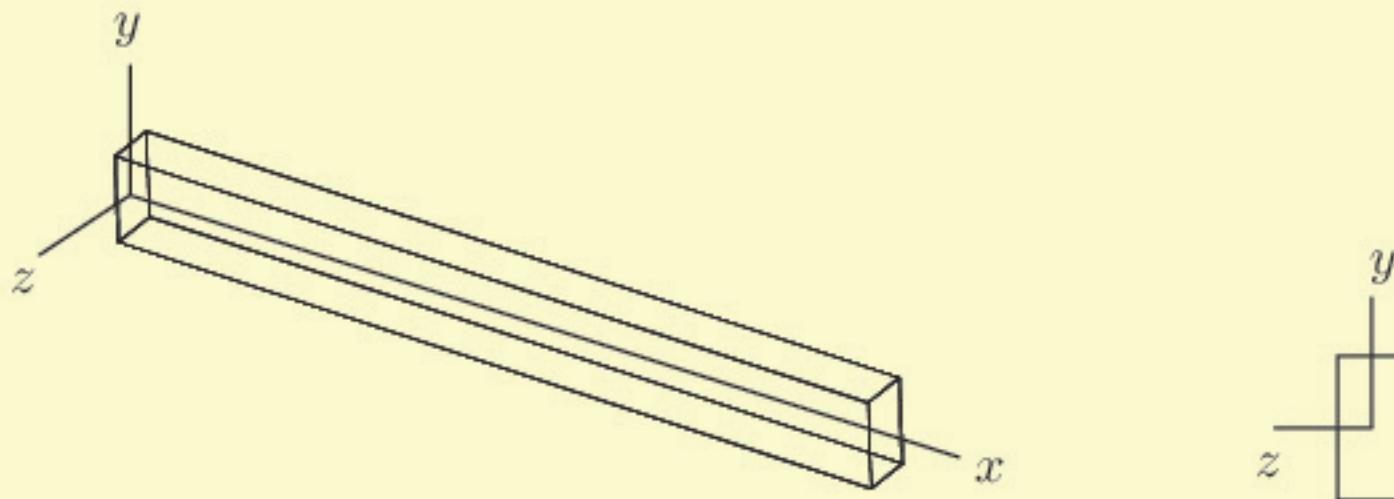
- The constitutive relationship is linear elastic



Beams: Shear and Moment Diagrams

■ Assumptions:

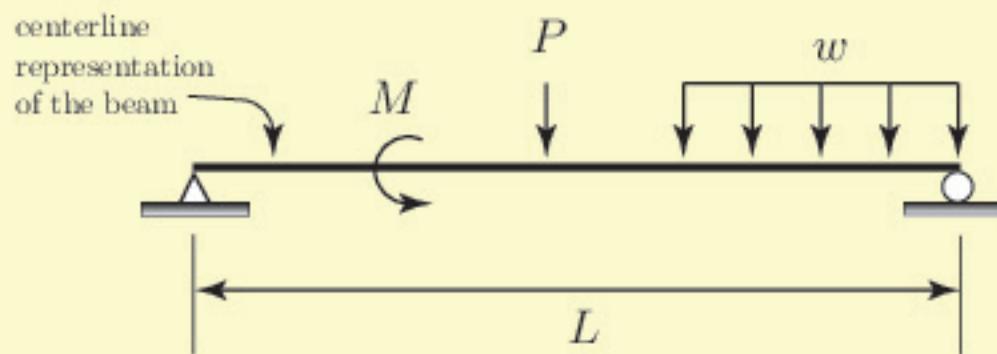
- Members are straight and prismatic



Beams: Shear and Moment Diagrams

■ Assumptions:

- Moments, either discrete or distributed, are directed normal to the longitudinal axis of the member only, *i.e.* in the z -dir
- Transverse load, either discrete or distributed, are directed normal to the longitudinal axis of the member only, *i.e.* in the y -dir



Beams: Shear and Moment Diagrams

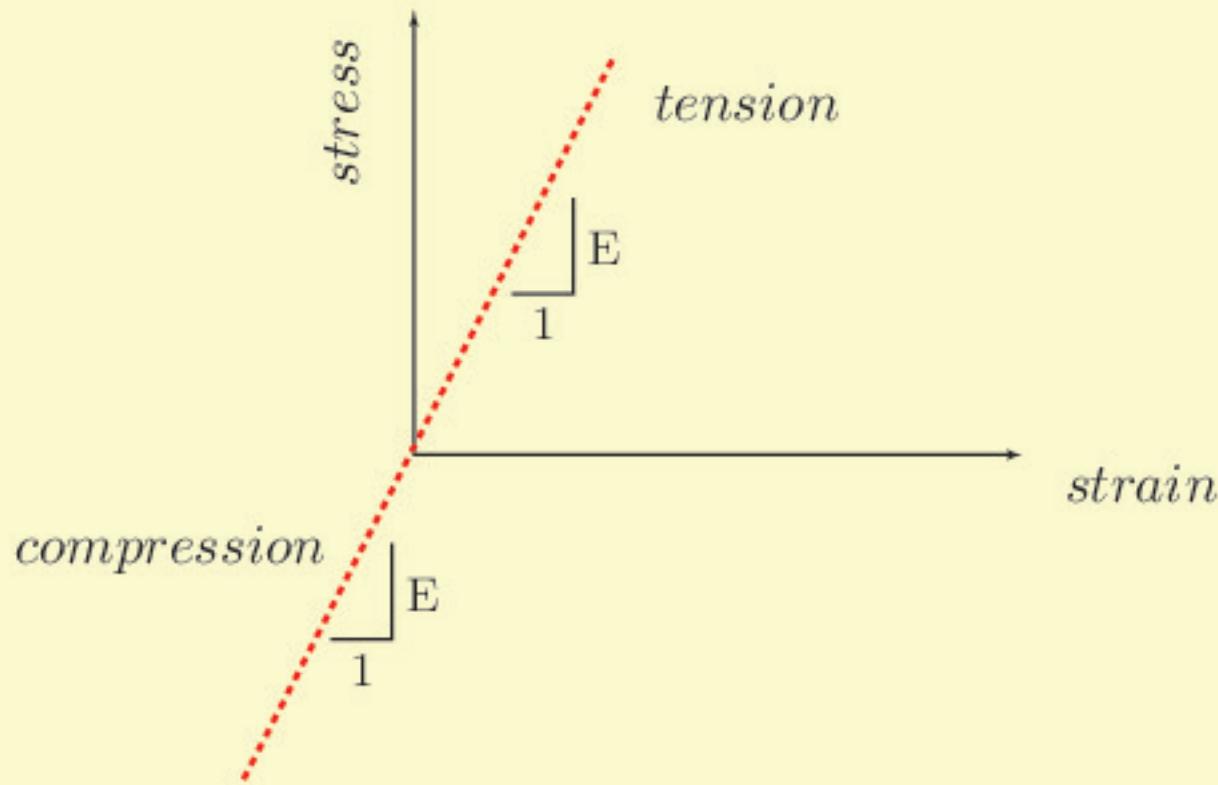
■ Assumptions:

- Localized effects of loading and/or boundary conditions are insignificant via appeal to Saint-Venant's Principle

Beams: Shear and Moment Diagrams

■ Assumptions:

- Material response is the same in all directions



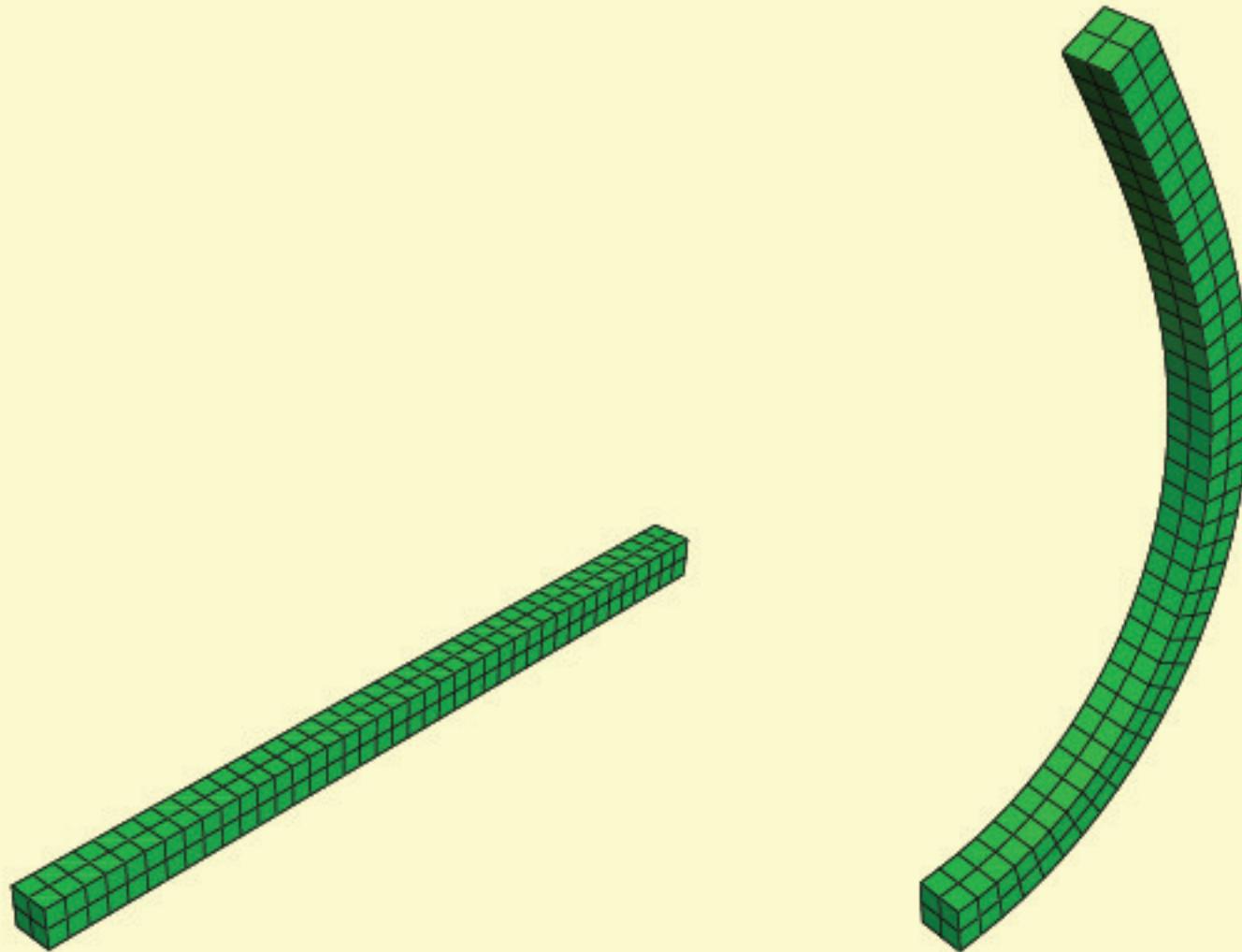
Beams: Shear and Moment Diagrams

■ Assumptions:

- The effect of either local or global instabilities (*e.g.* buckling) neglected and must be considered separately

Beams: Shear and Moment Diagrams

■ Motion of the body

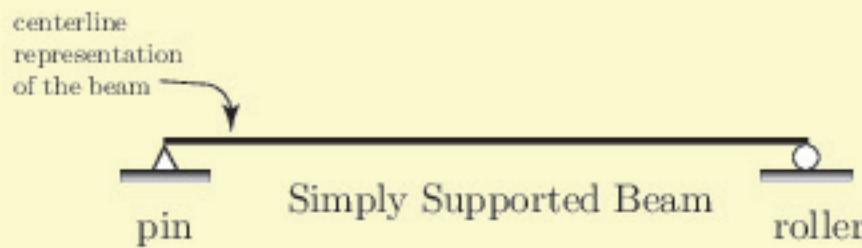
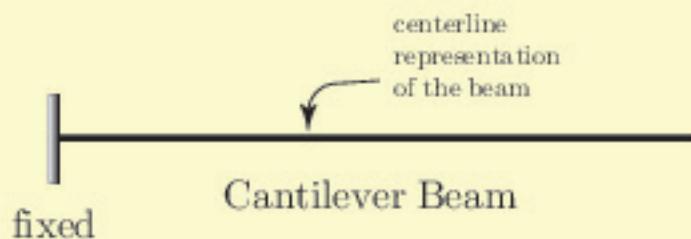
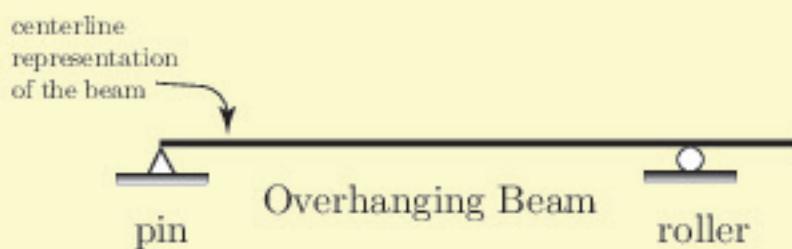


undeformed

deformed

Beams: Shear and Moment Diagrams

■ Boundary Conditions



Beams: Shear and Moment Diagrams

■ Boundary Conditions

- Common boundary conditions for planar beams

Description	Illustration	u_x	u_y	θ_z
Pin		fixed	fixed	free
Roller		free	fixed	free
Roller		fixed	free	free
Fixed		fixed	fixed	fixed
Moment roller		fixed	free	fixed

Beams: Shear and Moment Diagrams

- Determining reactions and member forces
 - Utilizing equilibrium in either two or three dimensions the reactions for an external determinate may be computed.
 - For a planar two dimensional beam there exists three independent equations of equilibrium:
 - two translational equations
 - one rotation equation

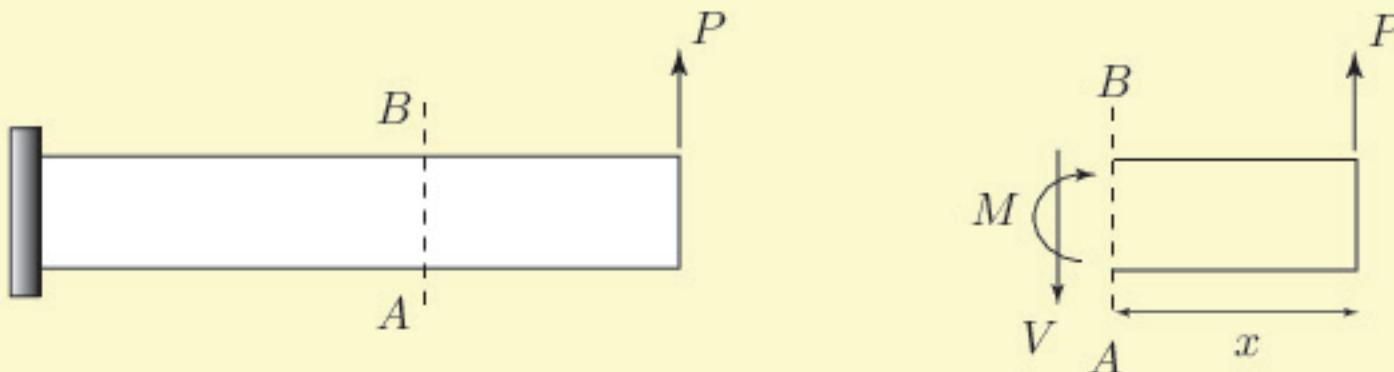
$$\sum F_x = 0, \quad \sum F_y = 0$$

$$\sum M_z = 0$$

Beams: Shear and Moment Diagrams

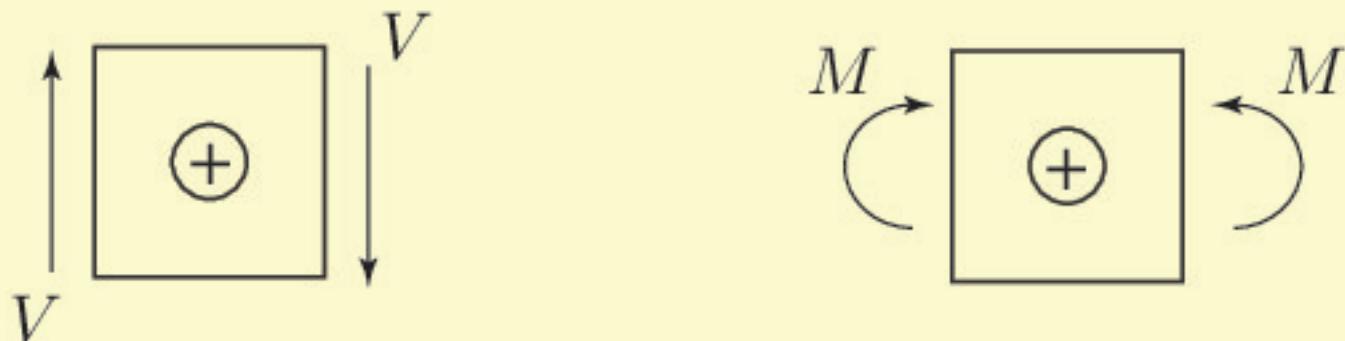
Shear force and bending moments

- When a beam is loaded internal stresses and strains are created.
- These stresses may be related to forces or moments (also called stress resultants) through integration over the cross section.
- The two stress resultants are a shear force and bending moment.



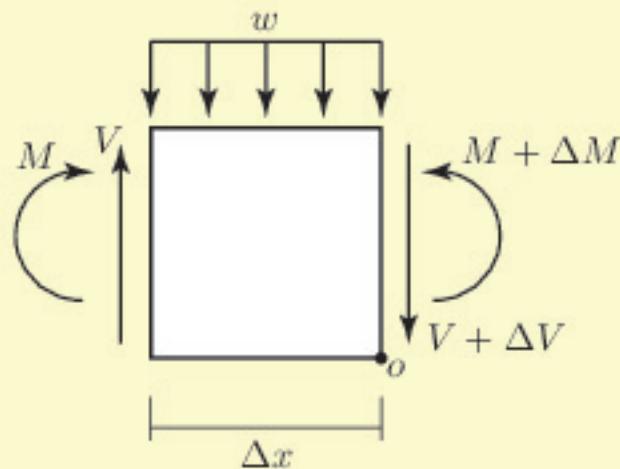
Beams: Shear and Moment Diagrams

- Shear force and bending moments: sign convention
 - The sign conventions for the internal stress resultants are developed from what is called the deformation sign convention, which may result in different conventions from the global equilibrium equations.



Beams: Shear and Moment Diagrams

- Relationship between load, shear, and moment
 - Consider an arbitrary slice of a beam



- Sum forces in the y-direction

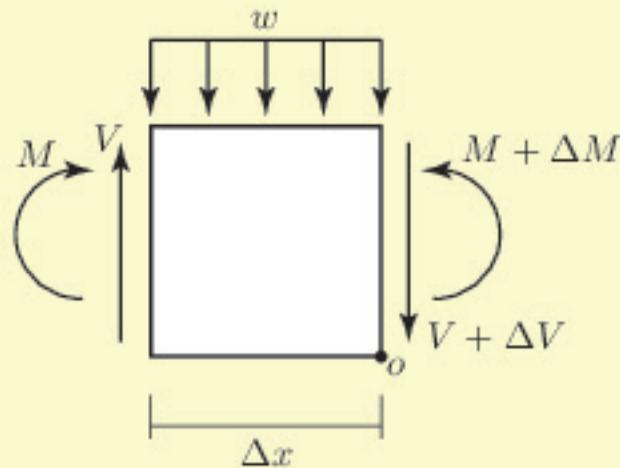
$$\sum F_y = V - (V + \Delta V) - w\Delta x = 0$$

divide by Δx and taking the limit as $\Delta x \rightarrow 0$ gives

$$\boxed{\frac{dV}{dx} = -w}$$

Beams: Shear and Moment Diagrams

- Relationship between load, shear, and moment
 - Consider an arbitrary slice of a beam



- Consider moments about the point “ o ”

$$\sum M_o = (M + \Delta M) - M - V\Delta x + \frac{1}{2}w\Delta x^2 = 0$$

divide by Δx and taking the limit as $\Delta x \rightarrow 0$ gives

$$\boxed{\frac{dM}{dx} = V}$$

Beams: Shear and Moment Diagrams

■ Relationship between load, shear, and moment

● Remarks

- The slope of the shear diagram is the negative of the magnitude of the distributed load w
- The area under the loading diagram is related to the shear diagram

$$\frac{dV}{dx} = -w \Rightarrow dV = -wdx \Rightarrow \int_a^b dV = - \int_a^b wdx \Rightarrow$$

$$V_b - V_a = - \int_a^b wdx \Rightarrow V_b = V_a - \int_a^b wdx$$

Beams: Shear and Moment Diagrams

■ Relationship between load, shear, and moment

● Remarks

- The slope of the moment diagram is equal to the magnitude of the shear, V
- The area under the shear diagram is related to the moment diagram

$$\frac{dM}{dx} = V \Rightarrow dM = Vdx \Rightarrow \int_a^b dM = \int_a^b Vdx \Rightarrow$$

$$M_b - M_a = \int_a^b Vdx \Rightarrow M_b = M_a + \int_a^b Vdx$$

Beams: Shear and Moment Diagrams

- Shear force and bending moment diagrams
 - For design the analyst needs to know the distribution of the internal forces to determine the maximum values
 - Knowing this distribution allows for “optimization” of the beam with respect to material and geometry
 - A convenient way to provide this information is to draw a graph showing how the internal shear, V and the internal moment, M vary with the position of the beam, x